5x^2+25x-160=180

Simple and best practice solution for 5x^2+25x-160=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2+25x-160=180 equation:



5x^2+25x-160=180
We move all terms to the left:
5x^2+25x-160-(180)=0
We add all the numbers together, and all the variables
5x^2+25x-340=0
a = 5; b = 25; c = -340;
Δ = b2-4ac
Δ = 252-4·5·(-340)
Δ = 7425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7425}=\sqrt{225*33}=\sqrt{225}*\sqrt{33}=15\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-15\sqrt{33}}{2*5}=\frac{-25-15\sqrt{33}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+15\sqrt{33}}{2*5}=\frac{-25+15\sqrt{33}}{10} $

See similar equations:

| 12.96x=12 | | -2(7x-1)=-14x+2 | | 96=8(n-84)+32 | | 3(x−1)=4x−2 | | 38-s=32 | | -3b+11=-8+51 | | 2x+5x+3x=90 | | .19y+.06(y+4000)=2240 | | -4(5y-1)+9y=3(y+4) | | 3(b+10)-5=1 | | 3(6)+3x=12 | | 3x-1+2x+2=31 | | (4x+6)+(7x+15)=114 | | 13x3x+2x=40 | | -9w-44=-5(w+8) | | -12=-3/4b | | 13xx3x+2x=40 | | -9x-8(-6x-2)=1 | | 6x+3(-5+4x)=1-x | | -1(-2x+4)=6 | | x/3x+8=5x. | | 6-54n=-54n+54n | | 2y-10=23-y. | | 2x2+29x-7.7=0 | | 13x+9=12x-2 | | 3(k+92)-16=97 | | 4(-3+4r)+5=-180 | | 0.04=(1500-x)÷1500 | | 20=5x2x | | 3(k+92)—-16=97 | | 0.04=(1500-x)/1500 | | 51=7-4n |

Equations solver categories